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Computational #uid dynamics (CFD) analysis of turbulent #ow past a square cylinder is
conducted using large eddy simulation (LES). In the "rst part of the paper, the implementation
of the three-dimensional (3-D) LES computation based on the conventional standard
Smagorinsky model (S model) shows a good prediction capability compared with that of
turbulence models based on Reynolds-averaged Navier-Stokes equations (RANS models).
Next, the computation using the dynamic Smagorinsky model (DS model) is carried out, and
the improvement by the use of DS model is described. Lastly, the Lagrangian dynamic
Smagorinsky model (LDS model) is introduced to overcome the disadvantages of DS model,
e.g., calculation instability. Results obtained from the various SGS models are compared with
those from experiments. ( 1999 Academic Press
1. INTRODUCTION

RECENTLY, THE RELATIVE PERFORMANCE of various turbulence models, i.e. the standard k-e
model, algebraic stress model (ASM), Reynolds stress model (RSM) and LES have been
examined in blu! body aerodynamics applications (Murakami et al. 1992, 1993; Murakami
1993). The #ow"eld around a blu! body is highly complex, since it consists of separation at
the front corners, recirculation, vortex shedding, etc. We have clari"ed that LES is the most
suitable tool for analysing the complicated #ow situations usually treated in applications of
blu! body aerodynamics. This paper reports on the recent developments in LES techniques
applicable to CFD in the research "eld of blu! body aerodynamics, and presents results of
analysis based on LES applied to unsteady #ow phenomena past a square cylinder.

2. FLOWFIELD ANALYSED: 3-D CHARACTERISTICS OF
FLOW PAST SQUARE CYLINDER

This paper is concerned with turbulent vortex shedding past a long square cylinder, which is
2-D in the mean. When the #ow"eld is 2-D in the mean, the unsteady #ow"eld is frequently
solved by unsteady 2-D computations in the "eld of engineering applications because CPU
time is reduced greatly as compared to 3-D computations. Figure 1 compares the power
spectrum given by 2-D and 3-D LES computations with experimental results (Vickery
1966). The spectrum shapes of lift force, F

L
, and drag force, F

D
, given by the 3-D

computation correspond very well to those from the experiment. On the other hand, the
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Figure 1. Power spectra of #uctuating lift and drag force.

Figure 2. Comparison of time-averaged velocity Su
1
T along the centreline.
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peak frequencies of lift force and drag force in the 2-D computation deviate greatly from the
experimental results. These large discrepancies in the results of 2-D LES are not surprising
because the instantaneous structure of the #ow"eld is highly 3-D. Thus, its e!ects cannot be
reproduced at all by 2-D LES computations. Hereafter, analysis by 3-D LES computations
will be presented.

Results for the #ow"eld around a 2-D square cylinder at Re"2)2]104 predicted by the
major turbulence models, i.e., the standard k-e model (Launder & Spalding 1974), RSM
(Launder et al. 1975; Craft & Launder 1992), and LES [based on the conventional standard
Smagorinsky model (S model) (Deador! 1970, 1972)] are compared in Figure 2. For this
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#ow"eld, the detailed experiment was carried out by Lyn and Rodi (1994) and Lyn et al.
(1995) and this #ow was used as the test case for recent LES workshops (Rodi et al. 1996;
Voke 1997). In our experience, 3-D LES shows the best agreement with experimental data,
even though the conventional S model is used. Next is RSM, while the standard k-e model
gives the poorest results. Figure 2 shows the general tendency of the relative performance of
these models; this is similar for other #ow"elds, i.e., for #ow around other types of blu!
bodies, such as a cube (Murakami 1993).

3. A NEW TOPIC FOR LES: DEVELOPMENT OF DYNAMIC LES

3.1. SHORTCOMINGS OF THE STANDARD SMAGORINSKY MODEL

AND ADVANTAGES OF THE DYNAMICA MODEL

The S model (standard Smagorinsky model) has been widely used in the computation of
LES since the pioneering work of Deardor! (1970). In the S model, a simple eddy-viscosity
type assumption is used for modeling the sub-grid scale (SGS) stress q

*+
, as detailed in the

following.

(i) SGS stress
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The S model is so simple and well-designed that it has been applied to many #ow"elds
and has attained great success. However, the S model has several shortcomings; e.g., (a) the
S model is overly dissipative, (b) the Smagorinsky constant, C

S
, must be optimized for each

#ow"eld, etc.
The Smagorinsky constant, C

S
, in the S model is optimized from 0)1 to 0)25 for various

#ow"elds (Schumann 1975; Clark et al. 1979; Monsour et al. 1979; Antonopoulos-Domis
1981; Biringen & Moin 1981; Moin & Kim 1982; Horiuti 1987; Mason 1989; Mason
& Derbyshire 1990; Mizutani et al. 1991). As was already pointed out, the #ow"eld around
a blu! body includes various types of #ow properties such as impinging, separation, free
shear layer, vortex shedding, etc. Thus, it is not easy to select one adequate value of C

S
for

analysing the #ow"eld around a blu! body. Therefore, the shortcoming of using a constant
value of C

S
becomes serious in CFD applications for blu! body aerodynamics.

To correct the drawback of a constant value of C
S
, several models have been proposed.

The most successful is the well-known dynamic model which was proposed by Germano
et al. (1991) and revised by Lilly (1992). In the standard dynamic Smagorinsky model
(hereafter called DS model for short), C("C2

S
) is determined as a variable of space and time

following the properties of the #ow"eld, using two "lters with di!erent characteristic scales:
a grid "lter and a test "lter (Germano et al. 1991), cf. equations (A1) and (A2) in Appendix A.
This treatment of C is the "rst advantage of the DS model over the S model.

The second advantage of the DS model over the S model is the treatment near the wall. In
the S model, the empirical model function fk (Van Driest 1956) is required for damping the



Figure 3. Comparison of time-averaged velocity SuN
1
T along the centreline between S model and DS model.
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SGS viscosity, l
SGS

in the area near the wall,

l
SGS

"(C
S
DM fk)2 DS1 D, fk"1!exp (!x`

n
/25). (5)

In the DS model, fk is not necessary since the value of C automatically goes to zero in the
laminar region just near the wall, and the model consequently becomes more elegant.

3.2. COMPARISON BETWEEN THE S MODEL AND THE DS MODEL

The prediction accuracy of DS model is much improved compared to the result of
conventional static S model, as is shown in Figure 3 (Murakami et al. 1997). In front of
the cylinder, the results are not in#uenced by the di!erence of the SGS models used but
large di!erences are observed in the wake region. The S model considerably underestimates
the length of the reverse #ow region. The DS model shows a better agreement with the
experiment than the S model.

3.3. DIFFICULTY WITH THE DS MODEL

The DS model has signi"cant advantages over the S model as described in the foregoing.
However, the DS model still has several aspects that require improvement. One of these
shortcomings is large #uctuations in C in the DS model. Since the #uctuations of C("C2

S
)

are very large in the DS model, it is not easy to carry out stable computations. This
drawback is particularly serious in the 3-D computation of blu! body aerodynamics.

3.4. TECHNIQUE FOR STABILIZING COMPUTATIONS BY THE DS MODEL

In order to stabilize the #uctuations in C, various techniques and models have been
proposed. Some of them are described below.

(i) Space or time averaging and clipping. When the #ow"eld has a homogeneous
direction (e.g. channel #ow), C is often calculated using the quantities averaged in the
homogeneous direction. The technique of time averaging is also used sometimes (Akselvoll
& Moin 1993). More simply, the technique of clipping is used, i.e. when C becomes negative,
it is forced to zero.
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(ii) Lagrangian dynamic model (Meneveau et al. 1994, 1996). The Lagrangian dynamic
Smagorinsky model (hereafter referred to as the LDS model) proposed by Meneveau et al.
(1994, 1996) introduced averaging along the #ow path line rather than averaging over
homogeneous directions. The length of averaging is a very important factor in the model-
ling. The details of LDS model are described in Appendix A.

4. PERFORMANCE OF LAGRANGIAN DYNAMIC SMAGORINSKY MODEL

4.1. COMPUTED CASES

The computed cases here are summarized in Table 1. In this paper, two cases of LDS model
computation are conducted. The LDS model is based on Lagrangian averaging of which the
time scale is de"ned as ¹"aDM I~1@4

LM
(¹"aN, N"DM I~1@4

LM
) as shown in Appendix A. One is

the case which adopts the time scale ¹"2N(a"2) as recommended by Meneveau et al.
(1994) for isotropic turbulence (refer to Appendix A). The other is a case in which the time
scale is reduced to 1/10 of the recommended value, i.e. ¹"0)2N (a"0)2) to investigate the
e!ect of the value of ¹. A large value of ¹ leads to a large contribution of the earlier
upstream information since the time scale, ¹, determines the length of integration along
a #ow path-line. It can be anticipated that the appropriate time scale in complex #ow"elds,
such as the #ow around a square cylinder, is smaller than that in isotropic turbulence
estimated by Meneveau et al. (1994) because the #ow characteristics change rapidly in the
#ow near the cylinder. Hence, the computation with 1/10 value of the recommended time
scale, ¹, for isotropic turbulence is tested.

4.2. RESULTS

4.2.1. Calculation Stability

The required CPU time for various SGS models used here is also shown in Table 1. The
required CPU time in application of the DS model is much larger than that used by
the S model, since the S model is very stable. As described above, the large #uctuation
of C in the DS model leads to calculation instability. Then, the computation of the
DS model requires more CPU time. CPU time can be reduced remarkably by switching the
SGS model from the DS to the LDS model. The reason is considered to be as follows.
The Lagrangian averaging contributes to the stabilization of the #uctuation of C. There-
fore, the computation of the LDS model becomes more stable than with the DS model,
and CPU time in the LDS model is reduced remarkably. As shown in Table 1, the S
model is very stable and the LDS model is quite stable. In contrast, the DS model is
unstable.
TABLE 1

Computed cases and required CPU time

Type of SGS model Averaging of C Clipping Required CPU time *

S * * *

DS Without with &4)3
LDS (¹"2N) Lagrangian without &2)2
LDS (¹"0)2N) Lagrangian without &2)2

*Normalized by the CPU time required by S model.
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4.2.2. ¹ime-averaged velocity

Figure 4 shows a comparison of mean velocity vectors around a square cylinder. The sizes
of reverse #ow region near the side face of the cylinder are almost the same in both cases of
the LDS model (¹"2N, ¹"0)2N) computations, and smaller than that of the DS model.
Figure 5. Comparison of time-averaged velocity SuN
1
T along the centre line for S, DS and LDS models.

Figure 4. Time-averaged velocity vectors around a square cylinder.



Figure 6. Comparison of time-averaged velocity SuN
1
T near the side-face for S, DS and LDS models.
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The position of eddy centre in this reverse #ow region is located leeward and near the
cylinder to some extent in both the LDS model cases compared with that of the DS model.

Figure 5 illustrates the streamwise distribution of the time-averaged velocity, SuN
1
T, along

the centreline. The LDS model with ¹"2N considerably underestimates the length of the
reverse #ow region behind the cylinder in comparison with both the DS model and the
experiment. On the other hand, the result of the LDS model with ¹"0)2N remarkably
improves accuracy and shows good agreement with the experiment in the region of
1(x

1
/D(2. Further downstream (x

1
/D'3), although the LDS model with ¹"0)2N

seems to give a more reasonable result than other SGS models compared here, the
recoveries of streamwise velocity in all cases are more rapid than that in the experiment.

Figure 6 compares the lateral distributions of SuN
1
T along the line at the midpoint of the

side face of the cylinder. In general, the results of both LDS model (¹"2N, ¹"0)2N)
computations show good agreement with the experiment.

4.2.3. Model coe.cient SCT1@2

Figure 7 illustrates the distributions of the model coe$cient, SCT1@2, along the same line as
Figure 6. In the S model, it corresponds to the value of C

S
("0)13) multiplied by the Van

Driest type dumping function fk. The SCT1@2 values predicted by both LDS model compu-
tations are generally smaller than that in the DS model. The values for the LDS models
become larger than that for the S model near the cylinder, but the values of the LDS models
are smaller than that of the S model in the region of x

2
/D'0)25. Rapid decrease of SCT1@2

in the LDS model cases in the region far from the cylinder is mainly due to the fact that
results of the LDS models are much more in#uenced by the upstream uniform #ow in this
region compared to the DS and S models.

4.2.4. Reynolds shear stress

Figure 8 shows a comparison of total shear stress, Su@
1
u@
2
T, (GS#SGS) along the same line

as in Figure 6. The results in both LDS model cases are quite di!erent from those in the



Figure 7. Comparison of model coe$cient C near the side-face. Figure 8. Comparison of shear
stress -Su@

1
u@
2
T near the side-face.

Figure 9. Distribution of the integration length ¸*, along the centreline (normalized by D).
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S and DS models. This di!erence is closely related to the di!erence of the position of the
eddy centre between the LDS models and the other models, as described above.

4.2.5. ¹he length of integration along -ow path-line

Figures 9 and 10 show the length of integration along the #ow path-line, ¸* (normalized by
D), which is controlled by ¹ in the LDS models. The value of ¸* is obtained as the length



Figure 10. Distribution of ¸* near the side-face.
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interval over which the integrated value of weighting function becomes 90% of the total
integral (from !R to t). Figures 9 and 10 compare the distribution of ¸* for the cases of
¹"2N and ¹"0)2N in the x

1
and x

2
directions, respectively. It is seen in these "gures

that ¸* in the case with ¹"2N is twice or three times larger than that in the case with
¹"0)2N in the region near the cylinder. As shown in Figure 10, ¸* in the case of ¹"2N is
larger than the cylinder width, 1D, near the side face (at x

2
"0)2D), while ¸*+0)6D in the

case of ¹"0)2N at the same point. The value of ¸* can be regarded to be less than 1D near
the side face, because ¸* should not exceed the extent where the property of #ow can be
regarded as almost similar. Therefore, the value of ¸* in the case of ¹"0)2N is considered
more reasonable than that of ¹"2N for #ow"eld near the cylinder.

5. REMAINING PROBLEMS AND FUTURE CHALLENGES FOR APPLYING
LES TO WIND ENGINEERING

As described in the foregoing, LES is a very powerful tool for predicting the #ow phe-
nomena associated with blu! body aerodynamics. In particular, the LDS model seems to be
very suitable for the research concerning such #ow"elds since it provides good calculation
stability and also good prediction accuracy. However, there still remain some problems to
be solved in the future for the practical application of LES to blu! body aerodynamics.

5.1. IN-FLOW BOUNDARY CONDITION

For the application of LES to a #ow"eld with obstacles, the technique for providing the
in-#ow boundary condition is very important since the periodic boundary condition, which
has been widely used in LES applications such as channel #ow cannot be used in such cases.
Furthermore, the in-#ow is always turbulent in wind engineering. When the in-#ow is
turbulent, some method for generating velocity #uctuations is required. In order to generate
such velocity #uctuations, several techniques have been invented (Mochida et al. 1993; Lee
et al. 1992; Kondo et al. 1997; Maruyama et al. 1997; Iizuka et al. 1999). The simplest
method is to store the time history of velocity #uctuations given from a preliminary LES
computation (Mochida et al. 1993). Second is the arti"cial generation method, in which
velocity #uctuations are given by the inverse Fourier transform of a prescribed energy



Figure 11. Generation of velocity #uctuations with prescribed energy spectrum and turbulence intensity.
(i) Time-history of velocity uN

1
(streamwise component) (ii) Frequency power spectrum of u@

1
given from generated

in#ow turbulence (iii) Instantaneous velocity vectors with in#ow turbulence

Figure 12. Comparison of time-history of lift coe$cient C
L

with and without in-#ow turbulence.
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spectrum with target turbulence intensity and length scale (Lee et al. 1992; Kondo et al.
1997; Maruyama et al. 1997; Iizuka et al. 1999). An example of velocity #uctuations given by
the latter method is shown in Figure 11 (Iizuka et al. 1999). Here, the computation of LES is
tested, based on the S model with in-#ow turbulence of which turbulence level is 6%.



TABLE 2

Integral parameters

In-#ow turbulence;
turbulence intensity

Reynolds
number C@

L
SC

D
T St

Computation without Smooth 2)2]104 0)86 1)99 0)135
in-#ow turbulence
Computation with 6% 2)2]104 0)79 1)93 0)140
in-#ow turbulence
Lyn (1994, 1995) 2% 2)2]104 * 2)1 0)132
Durao (1988) 6% 1)4]104 * * 0)138
Vickery (1966) Smooth 1)0]105 1)32 2)05 0)118

10% 0)68 * 0)120
Lee (1975) Smooth 1)8]105 * 2)05 *

6)5% * 1)93 *
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Figure 12 shows a comparison of the time history of the lift coe$cient, C
L
, predicted in

cases with and without in#ow turbulence. Both results show almost the same magnitude of
the amplitude of C

L
. However, small perturbations are overlapped on the periodic vortex

shedding #uctuations in the presence of in-#ow turbulence.
Integral parameters predicted in the cases with and without in-#ow turbulence are

compared in Table 2 with experimental values. The r.m.s. value of lift coe$cient, C@
L
, and

mean drag coe$cient, SC
D
T, predicted by the case with in-#ow turbulence are lower than

those of case without in#ow turbulence. The e!ect of in#ow turbulence is found to decrease
these values. The value of Strouhal number, St, on the contrary, becomes larger as the
in#ow turbulence level is increased. These tendencies also appear in the experimental results
(Lyn & Rodi 1994; Lyn et al. 1995; Durao et al. 1988; Vickery 1966; Lee 1975). The results in
the computations generally agree with the experimental trends.

Since the treatment of the turbulent in-#ow boundary condition is a very important
subject for wind engineering applications, more attention and e!ort should be devoted to
this technique.

5.2. NEAR-WALL TREATMENT

In wind engineering problems, Reynolds numbers are usually very large. This makes it very
di$cult to use the non-slip boundary condition at a solid wall. Thus, the adoption of
a macroscopic boundary condition, i.e., some wall function, is necessary in CFD applica-
tions to blu! body aerodynamics. In recent years, the present authors have used the Werner
and Wengle type wall boundary condition which assumes a linear or power law distribution
of the instantaneous velocity just near the wall according to the value of x`

n
(Werner and

Wengle 1991):

uN
u
*
"x`

n
when x`

n
411)81: linear law (non-slip), (6)

uN
u
*
"8)3x`1@7

n
when x`

n
'11)81: power law. (7)

It should be noted that this wall boundary condition becomes completely identical to the
non-slip boundary condition when x`

n
411)81. Therefore, this boundary condition should

be called an &&extended'' non-slip boundary condition.
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6. CONCLUSIONS

This paper reviews recent developments in LES application to blu! body aerodynamics.
One of the most important achievements in LES research in recent years seems to be the
development of the dynamic type LES. The dynamic SGS model (DS model) improves the
prediction accuracy remarkably in comparison with the result of the standard Smagorinsky
model (S model), but computations tend to be unstable when it is applied to the #ow past
blu! bodies.

To correct this drawback of the DS model, a method for stabilization by averaging over
particle trajectories employed by the Lagrangian dynamic SGS model (LDS model) is very
useful. This technique can contribute to a remarkable improvement of calculation stability
and also to the improvement of prediction accuracy when an appropriate value is selected
for the time scale for Lagrangian averaging.

We conducted two cases of LDS model computations in order to investigate the e!ect of
the time scale ¹, which corresponds to the integral interval along the #ow path line. One is
the case of ¹"2N optimized by Meneveau et al. (1994) for isotropic turbulence, and the
other is the test case of ¹"0)2N. Within the experience of our group, the LDS model with
¹"0)2N provides more reasonable results than does the case with ¹"2N. This means
that the appropriate value of ¹ for #ow past blu! body is di!erent from that for isotropic
turbulence studied by Meneveau et al. (1994).

There still remain some problems to be resolved for practical applications of LES. One of
the most important of such problems is related to the treatment of velocity #uctuations at
the in-#ow boundary. An example of the results based on the arti"cial method for
generating in-#ow turbulence is presented in this paper.
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APPENDIX A: OUTLINE OF LAGRANGIAN MODEL

The foundation of the dynamic SGS model is the Germano identity, which is expressed as
follows:

L
ij
"¹

ij
!qL

ij
"uN

*
YuN
j
!uNK

i
uNK
j
, (A1)

where

¹
ij
"u

*
Yu
+
!uNK

i
uNK
j
, (A2)

and where the overhat ( Y ) denotes the test "ltering operation.
The error associated with the use of Smagorinsky model in the Germano identity is

de"ned as

e
ij
(x, t)"!2C (x, t)M

ij
(x, t)!L

ij
(x, t), (A3)
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M
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"DM K 2 DSMK DSMK

ij
!DM 2DSMY DSM

*+
. (A4)



CFD ANALYSIS OF TURBULENT FLOW PAST SQUARE CYLINDER 1109
In the DS model, this local error, e
ij
, is minimized at each time and position. In this

paper, the least-squares method proposed by Lilly (1992) is used in order to minimize the
square of e

ij
.

On the other hand, the LDS model is derived by minimizing the error along #uid particle
trajectories. Its trajectory for earlier times t@(t is given by

z(t@)"x!P
t

t{

u(z (t@@), t@@) dt@@, (A5)

where u(z(t@@), t@@) is the velocity vector at time t@@ and position z(t@@).
In the LDS model, the total error E is de"ned as the square of the error e

ij
integrated from

!R to t,

E"P
t

~=

Me
ij
(z(t@), t@)N2=(t!t@) dt@. (A6)

The weighting function, =(t!t@), is introduced here in order to control the relative
importance of events near time t with those of earlier times. That is, the error e

ij
at time t is

weighted most strongly and the degree of weighting becomes weaker for earlier times. Thus,
the de"nition of this weighting function determines the degree of incorporating the e!ect of
earlier upstream information into the total error. The total error is then minimized with
respect to C by the following equation:

LE

LC
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2e
ij
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LC

= (t!t@ ) dt@"0. (A7)

By substituting equation (A3) into equation (A7), we obtain

C(x, t)"!

1

2

I
LM

(x, t)

I
MM

(x, t)
, (A8)

where

I
LM

(x, t)"P
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M
ij
(z(t@), t@)M

ij
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As to the form of the weighting function=(t!t@), Meneveau et al. (1994, 1996) proposed
the use of an exponential function, =(t!t@)"¹~1 e~(t~t{)@T, because of its simplicity. In
this case, I

LM
and I

MM
are solutions to the following relaxation-transport equations:
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Here, the time scale¹ controls the memory length of Lagrangian averaging and the value of
¹ corresponds to integral period. According to Meneveau et al. (1994), equations (A11) and
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(A12) are simpli"ed as follows:

In`1
LM

(x)"e[L
ij
M

ij
]n`1 (x)#(1!e)I

LM
(x!uN n(x)Dt), (A13)

In`1
MM

(x)"e[M
ij
M

ij
]n`1 (x)#(1!e)I

MM
(x!uN n (x)Dt), (A14)

where

e"(Dt/¹n )/(1#Dt/¹n), (A15)

and In
LM

(x), In
MM

(x) are I
LM

, I
MM

at position x and time n, respectively; uN n(x) is the velocity
vector at position x and time n, and ¹n is the time scale at time n.

In this paper, the form of ¹"aDM I~1@4
LM

(¹"aN, N"DM I~1@4
LM

) is adopted according to
Meneveau et al. (1994). Here, a is a model coe$cient which controls the length of ¹.
Meneveau et al. (1994) recommend a"2, i.e. ¹"2DM I~1@4

LM
(¹"2N, N"DM I~1@4

LM
) by the

optimization of a from the computational results of isotropic turbulence. The authors
optimized the value of a when applying the LDS model to the #ow"eld around a blu! body.

APPENDIX B: NOMENCLATURE

C
D

drag coe$cient
C

L
lift coe$cient

C
S

Smagorinsky constant
D width of square cylinder
( f ' time-averaged value of f
fM grid "ltered value of f
fK test "ltered value of f
f @ deviation from S f T, f @"f!S f T; in LES, f @"fM!S fM T
fk damping function
n frequency
p pressure
x
i

three components of spatial coordinate; i"1, 2, 3: streamwise, lateral,
vertical (or spanwise)

x
n

distance from the wall
x`
n

"u
*
x
n
/l, where u

*
is the friction velocity

u
i

three components of velocity vector
Su@

i
u@
j
T Reynolds stress

l
SGS

subgrid eddy viscosity
;

0
time-averaged value of u

1
at the in-#ow boundary

S(n) spectrum in the frequency domain
St Strouhal number

When values are made dimensionless, representative length scale D and velocity scale
;

0
are used.
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